

Brussels, 27 June 2019

Presentation Hydrogen backbone in the Netherlands HIPS-NET workshop 2019

Adriaan de Bakker

Brussels, 27 June 2019

Someday...

"Yes, my friends, I believe that water will one day be employed as fuel, that hydrogen and oxygen which constitute it, used singly or together, will furnish an inexhaustible source of heat and light, of an intensity of which coal is not capable."

Jules Verne, The Mysterious Island, 1874

Gas can be stored more efficiently than electricity

crossina borders in enerav

Gas can be stored more efficiently than electricity

Volume

 1 cavern with 1 mln m³ of hydrogen equals 240,000 MWh (= 6,100 tons H₂)

Equivalents

- 24 mln. power walls (10 KWh, Tesla)
- 2400 of the largest batteries in the world (100 MWh, Tesla)

Experience

- H₂ storage in caverns is an existing technology
- Many years of experience in the UK and US

Costs

 Storing hydrogen is factor 1000 cheaper versus electricity in power wall

5

Hydrogen grids

crossing borders in energy

- 1. Air Liquide network in Belgium and France
 - Length: ~1000 km
 - Operating pressure: ~100 bar
 - Diameter: ~25-30 cm
- 2. Air Products pipeline in Rotterdam
 - Length: ~140 km
- 3. Air Liquide pipeline in Rhine-Ruhr
 - Length: ~240 km

Hydrogen Pipelines			
Company	km		
Air Liquide	1936		
Air Products	1140		
Linde	244		
Praxair	739		
Others	483		
World Total	4542		
U.S.	2608		
Europe	1598		
Rest of World	337		
World total	4542		

Refit from natural gas to hydrogen pipeline

- Existing 16", 66 bar, 12 km natural gas pipeline
- Operational as hydrogen pipeline end of 2018
- Saves 20-40 kton CO2 emissions per year

Hydrogen supply and demand scenarios

Dutch Climate Agreement Working Group on Hydrogen

Proposed dedicated Hydrogen Network in the Netherlands

crossina borders in enerav

- Connects large industrial centers in the Netherlands, supply, storage, other countries
- Can be operational in 2030, also in smaller steps
- Capacity 5 29 GW
- 1,5 billion € (including storage)

Infrastructure Outlook 2050

- Joint study Gasunie and TenneT
- Netherlands and Germany

Electricity network + hydrogen network + methane network = combined network

IO2050 - scenarios

	Local	National	International
Power & Light	25% base-load savings through more efficient appliances. Substantial electrification of industry	25% base-load savings through more efficient appliances. Substantial electrification of industry	25% savings through more efficient appliances
Low-temperature heat	High penetration of heat grids and all-electric (restrictions on green gas, no H2 distribution) Savings: 23%	High penetration of hybrid heat pumps burning H2 (and green gas) (restrictions on green gas) Savings: 23%	High penetration of hybrid heat pumps burning H ₂ and green gas (mild restrictions on green gas). Savings: 12%
High-temperature & feedstock industry	Circular industry and ambitious process innovation: 60% savings 55% electrification 97% lower CO ₂ emissions	Circular industry and ambitious process innovation: 60% savings 55% electrification 97% lower CO ₂ emissions	Biomass-based industry: 55% savings 35% biomass 14% electrification 95% lower CO ₂ emissions
Passenger transport	100% electric	75% electric 25% hydrogen	50% electric 25% green gas 25% hydrogen
Freight transport	50% green gas 50% hydrogen	50% green gas 50% hydrogen	25% synthetic fuels 25% green gas 50% hydrogen
Renewables generation	84 GW solar 16 GW onshore wind 26 GW offshore wind	34 GW solar 14 GW onshore wind 53 GW offshore wind	16 GW solar 5 GW onshore wind 6 GW offshore wind
Conversion and storage	75 GW electrolysis 60 GW battery storage	60 GW electrolysis 50 GW battery storage	2 GW electrolysis 5 GW battery storage
Hydrogen	100 TWh domestic generation	158 TWh domestic generation	73 TWh import 4 TWh domestic generation
Methane	23 TWh domestic biomethane 35 TWh imported natural gas	46 TWh domestic biomethane 55 TWh imported natural gas	24 TWh domestic biomethane 72 TWh imported natural gas
Biomass			28 TWh import

Table 2: Main characteristics of the Dutch scenarios

Time series

- Peak supply electricity much higher then peak demand: use batteries and electrolysis
- Peak supply hydrogen 50 GW electrolysis
- Flat supply methane: green gas production and import; fluctuating heat demand methane

Sunny summer day, high wind, low energy demand

Cold winter evening

18

Some conclusions

- Energy networks need further integration. The existing gas network can be split into a hydrogen and methane network, with enough capacity in 2050
- Also after 2030 electricity networks will need to grow to accommodate the growing demand for electricity
- Total seasonal storage needs: ~35 TWh. Of this, 15 TWh of hydrogen is needed (for which North Netherlands has enough potential for caverns)
- Important to place and size electrolysis in close discussion with both electricity and gas TSO's. Location close to renewable electricity production helps integrating large amounts of wind/solar energy
- Gasunie, TenneT, and regional network operators, will in 2021 report on an integral infrastructure study 2030-2050 (legal requirement)

19

Gasunie (joint) hydrogen projects

crossing borders in energy

