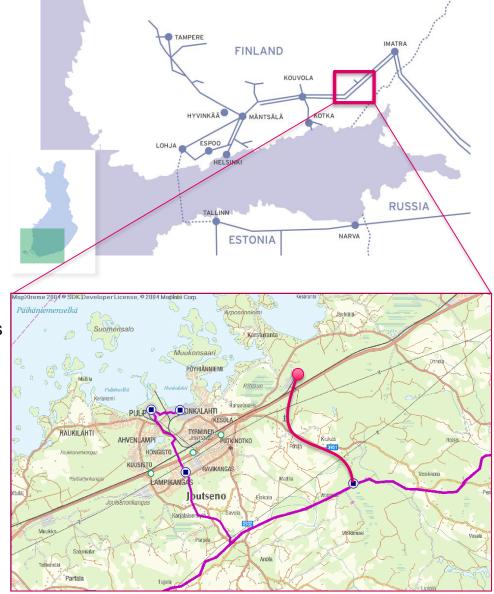
HYDROGEN AND P2G IN FINLAND

Ari Suomilammi, Gasum Oy Pasi Vainikka, LUT


HYDROGEN

Hydrogen & gas transmission grid in Finland

Case Joutseno:

- Max 3500 m3/h pure H₂
- At atmospheric pressure
- Near Gas transmission grid:
 - flow between 200-900.000 m³/h
 - Pressure 35-54 bar
- Technical feasibility study completed
 - Compressor(s), pipeline 5 km, analyzers
- Commercial negotiations on-going

1.1	M: 00 0 0/
H_2	Min 99,9 %
Inert (N ₂)	Max 200 ppm-vol
CI ₂	Max 2 ppm-vol
O ₂	Max 20 ppm-vol
CO ₂	Max 30 ppm-vol
H ₂ O	Dew point at less than
	-30 C°

Woikoski P2H₂ plant in Kokkola

- The largest facility in Europe to produce hydrogen from water by electrolysis, and will simultaneously produce ultra-pure oxygen
- 3 x 3 MWe pressurised alkaline electrolysis

NEO - CARBON ENERGY PROJECT

/ KEY FIGURES

- 5 years 2014-2019
- 14 M€
- 3 Finnish research partners
- 16 industrial partners
- 3 NGOs
- 5 international partners

Contact:

Pasi VAINIKKA, +358 40 5825987 Principal scientist VTT, Adjunct professor LUT

NEO CARBON **ENERGY**

TRUST IN RENEWABLE.

NEO CARBON **ENERGY**

TRUST IN RENEWABLE.

/ WORK PACKAGES

- 1. Futures research
- 2. Energy system modelling, simulation and economics
- 3. Business case identification. Feasibility
- 4. Process modelling and simulation
- 5. Experimental
- 6. International activities
- 7. Management and dissemination

/ FINNISH ASPECTS TO P2G

Snapshot for EU legislation post 2020

Article 1

Amendments to Directive 98/70/EC

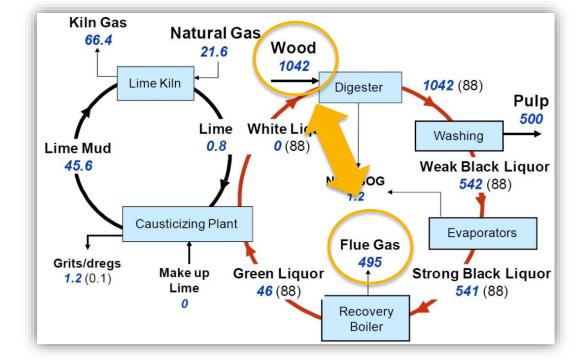
Directive 98/70/EC is amended as follows:

(1) In Article 2, the following points are added:

AMENDMENTS BY THE EUROPEAN PARLIAMENT*

to the Council position at first reading

DIRECTIVE (EU) 2015/...
OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

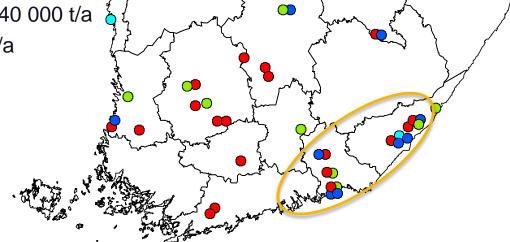

amending Directive 98/70/EC
relating to the quality of petrol and diesel fuels
and amending Directive 2009/28/EC
on the promotion of the use of energy from renewable sources

"9a. "renewable liquid and gaseous transport fuels of non-biological origin" means gaseous or liquid fuels other than biofuels whose energy content comes from renewable energy sources other than biomass, which are used in transport;

- http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+REPORT+A8-2015-0025+0+DOC+PDF+V0//EN
- http://www.europarl.europa.eu/sides/getDoc.do?type=TA&reference=P8-TA-2015-0100&language=EN&ring=A8-2015-0025

CO₂ RESOURCE

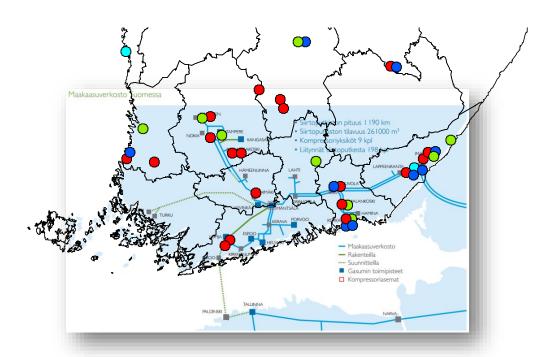
- Half of the carbon in pulp production ends up to CO₂ (black liquor combustion)
- Production of pulp in Finland is 7 Mt_{AD}, from the CO₂ emitted some 70 80
 TWh CH₄ can be produced, half of the mills are connected to the gas grid
- Natural gas consumption in Finland 30 TWh
- Total biomass use in power plants 70 TWh, about 140 TWh P2G CH₄ can be produced from wood-based CO₂


Pulp mills along the gas network

Blue points:

- Joutseno, 630 000 t/a
- Kaukopää, 850 000 t/a
- Kotka, 170 000 t/a
- Tainionkoski, 170 000 t/a
- Sunila, Kotka, 370 000 t/a

Kaukas, Lappeenranta, 740 000 t/a


Kymi, Kouvola, 600 000 t/a

Pulp mills along the gas network

- Today some 40 TWh/a of renewable CH₄ can be produced at the (large point CO₂ emission source) pulp mills that are connected to the gas network
- Finnish road transportation energy use 50 TWh/a
- Total potential at the pulp mills can cover the gas need for Finland and the Baltics, total 80 TWh/a (to the Baltics through the Balticconector)

Case UPM Kaukas pulp mill:

CH₄ production is profitable today for transportation use, if electrolyser provides frequency containment for the E-TSO

Case A:

- hydropower supply, baseload operation, no RE fuel quota value
- not (yet) profitable

					-4438									4149	annual provit	-289 k€/
Annual expenditures			price		k€/a				Annual incomes	/benefits		price		k€/a		
power requirement	76800	MWh/a	40	€/MWh	-3072				02	12170	t/a	8	c/kg	974		
water	13703	t/a	25	c/m3	-3		Steam @	6.5 bar fro	om methanation	8045	MWh/a	0	€/MWh	0		
CO2 purchase	8367	t/a	10	€/t	-84				Sold bio-CH4	42341	MWh/a	75	€/MWh	3176		
CAPEX (electr.+methanation)	17,9	M€	0 %	WACC	-895			Heat fro	om electrolysers	20736	MWh/a	0	€/MWh	0		
other OPEX (electr.+methanation)	9600	kW	40	€/kW,a	-384	Decreased CH4 consumption (BtL+limekiln)				0	MWh/a	35	€/MWh	0		
CAPEX (H2 storage)	0,00	M€	0 %	WACC	0	Decreased CO2 allowances (BtL+limekiln)				0	t/a	20	€/t	0		
other OPEX (H2 storage)	0,0	k€/a			0	Decreased H2 converison costs in BtL plant				0	MWh/a	7	€/MWh	0		
extra personnel for grid service 0 k€/a	k€/a			0				Grid service	9,6	MW	0	€/MW,h	0			
							renewab	le energy	fuel quota value	42341	MWh/a	0	€/MWh	0		

Case B:

• hydropower supply, 4.8 \pm 4.8 MW operation (>8000 operation hours per year), grid services

profitable for integrated value chain (O₂, grid services, H₂ substitute, bio-SNG for mobility)

					-2783									3352	annual pro/it	568 k€/
Annual expenditures			price		k€/a				Annual incomes	/benefits		price		k€/a		0
power requirement	38400	MWh/a	40	€/MWh	-1536				O2	6546	t/a	8	c/kg	524	W ACC	5,4 %
water	7371	t/a	25	c/m3	-2		Steam @	6.5 bar fr	om methanation	1082	MWh/a	o	€/MWh	0	,'oE	11,0 %
CO2 purchase	1125	t/a	10	€/t	-11				Sold bio-CH4	5694	MWh/a	75	€/MWh	427		
CAPEX (electr.+methanation)	15,5	M€	0 %	WACC	-775			Heat fr	om electrolysers	10368	MWh/a	0	€/MWh	0		
other OPEX (electr.+methanation)	9600	kW	30	€/kW,a	-288	Decrea	sed CH4 c	onsumpti	on (BtL+limekiln)	23004	MWh/a	35	€/MWh	805		
CAPEX (H2 storage)	1,73	M€	0 %	WACC	-87	Decreased CO2 allowances (BtL+limekiln)				4546	t/a	20	€/t	91		
other OPEX (H2 storage)	34,7	k€/a			-35	Decreased H2 converison costs in BtL plant			23004	MWh/a	7	€/MWh	161			
extra personnel for grid service	50	k€/a			-50				Grid service	4,8	MW	35	€/MW,h	1344		
							renewab	le energy	fuel quota value	5694	MWh/a	0	€/MWh	0		

NEO-CARBON Energy project is one of the Tekes strategic research openings and the project is carried out in cooperation with Technical Research Centre of Finland VTT Ltd, Lappeenranta University of Technology LUT and University of Turku, Finland Futures Research Centre FFRC.