

FUTURE TRENDS FOR SUSTAINABLE MOBILITY

JULIANE MUTH, VOLKSWAGEN AG

HIPS-NET WORKSHOP | BRUSSELS | 23RD JUNE 2015

VOLKSWAGEN ARTIENGESELLSCHAFT

VALUE CREATION IN THE AUTOMOTIVE INDUSTRY IS UNDERGOING CHANGE

Downsizing

Digitalization

Plug-In-hybrid

Climate change

CO₂ emissions

Urbanization

Hydrogen Sustainability

Car sharing

E-mobility

Battery technoloy

Connected Car

Major cities

Lithium-ion

Peak Oil

VOLKSWAGEN

FUEL TRENDS FOR TRANSPORT

fuel trends

- Electrification of transport
- CO2-reduced fuels for transport

CASE STUDY: ENERGY CONSUMPTION FOR ROAD TRAFFIC IN THE EU*

* 2011 EU WHITE PAPER: Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system Group Research | Battery and Energy Carriers | K-GERAB/E | J. Muth

CASE STUDY: ENERGY CONSUMPTION FOR ROAD TRAFFIC IN THE EU*

The use of fossil fuels for road traffic needs to be reduced by a factor of 3 until 2050.

(1) Electrification

50% of individual mobility will be covered electrically by 2050 (BEV + PHEV)

(2) CO₂-reduced fuels

Amount of "green" fuels for transport will sevenfold by 2050.

electric mobility

■CO₂-reduced fuels

■fossil fuels

*based on data of IEA MobilityModell, progtrans, World Transport reports 2012/2013, own consumptions Group Research | Battery and Energy Carriers | K-GERAB/E | J. Muth

CASE STUDY: ENERGY CONSUMPTION FOR ROAD TRAFFIC IN THE EU*

The use of fossil fuels for road traffic needs to be reduced by a factor of 3 until 2050.

(1) Electrification

50% of individual mobility will be covered electrically by 2050 (BEV + PHEV)

(2) CO₂-reduced fuels

Amount of "green" fuels for transport will sevenfold by 2050.

electric mobility

■CO₂-reduced fuels

■fossil fuels

*based on data of IEA MobilityModell, progtrans, World Transport reports 2012/2013, own consumptions Group Research | Battery and Energy Carriers | K-GERAB/E | J. Muth

CO₂ TREND IN THE VOLKSWAGEN GROUP

E-GOLF TODAY – SHORT DISTANCE SOLUTION

Technical Data

Maximum speed:	140 km/h	
Electric motor:	85 kW	
Torque:	270 Nm	
Consumption, NEFZ:	12.7 kWh/100 km	
Electrical range (NEDC):	190 km	
Energy content battery	24.2 kWh	

LITHIUM-ION BATTERY: ROADMAP FOR HIGH-ENERGY BATTERIES

LITHIUM-ION BATTERY: ROADMAP FOR HIGH-ENERGY BATTERIES

CHALLENGES OF CHARGING

Charging capacity

HV-batteries with high energy content require higher charging capacities.

Operation

Economic efficiency of operation of charging stations

Regenerative energy

Further expansion of CO₂-neutral mobility

HIGHWAY INFRASTRUCTURE FOR BEVS*

ASSUMPTION: 5 % OR 30 % BEV IN 2030

Influence of vehicle range Example: 800 km highway trip Refueling at service area Route without refueling necessary 70 Gasoline / Diesel O **BEV** (2030)Number of refueling operations is increasing

Fast-charging stations (200kW)

- Individual demand adaption
- charging time ~15 minutes for 80% state-of-charge
- Exposure of the battery

Connecting power from the grid for service areas of 2.5 MW for 5 % BEV and 20 MW for 30 % BEV in 2030 is required.

^{*} assuming 500km NEFZ-range in 2030

BEYOND LITHIUM-ION BATTERY: SOLID STATE BATTERY

VOLKSWAGEN

HYMOTION4 – TWO VEHICLE CONCEPTS WITH ONE FUEL-CELL SYSTEM

FOURTH GENERATION OF FUEL CELL VEHICLES IN VOLKSWAGEN GROUP RESEARCH

Volkswagen NMS HyMotion

E-machine: 100 kW

 v_{max} : 160 km/h

0-100 km/h: 12 sec

Range: 420 km

Battery: 1.1 kWh

HyMotion 4

Performance: 80 kW

Audi A7 Sportback h-tron quattro

E-machine: 2 x 85 kW

 v_{max} : 180 km/h

0-100 km/h: 8 sec

Range: > 500 km

Battery: 9.5 kWh

CASE STUDY: ENERGY CONSUMPTION FOR ROAD TRAFFIC IN THE EU*

*based on data of IEA MobilityModell, progtrans, World Transport reports 2012/2013, own consumptions

Group Research | Battery and Energy Carriers | K-GERAB/E | J. Muth

VOLKSWAGEN

CO2 REDUCED FUELS

ADVANCED FUELS IN EUROPE AND THE USA (SELECTION)

CO₂-ABATEMENT COSTS 2014

DIFFERENTIAL COSTS TO GASOLINE OVER VEHICLE LIFETIME*

Group Research | Battery and Energy Carriers | K-GERAB/E | J. Muth

CO₂-ABATEMENT COSTS 2020

DIFFERENTIAL COSTS TO GASOLINE OVER VEHICLE LIFETIME*

*200.000 km mileage (vehicle lifetime)

OPTIONS FOR STORING AND USING "GREEN" ELECTRICITY

The question of future vehicle concepts can only be answered in context with future energy solutions of the energy sector.

VOLKSWAGEN POWERTRAIN AND FUELS STRATEGY

COEXISTENCE OF PROPULSION SYSTEMS

- ⇒ Coexistence of conventional powertrains and electrified mobility
- ⇒ Decarbonisation of the energy carrier and higher powertrain efficiency
- ⇒ A portfolio of various drivetrains will fulfil the customer expectations

VOLKSWAGEN AKTIENGESELLSCHAFT

Juliane Muth

Dipl.-Ing.

Group Research
Powertrain
Battery and Energy Carriers

Volkswagen Aktiengesellschaft

Letter Box 011/17780

D-38436 Wolfsburg

tel. +49 (5361) 9-41036

juliane.muth@volkswagen.de