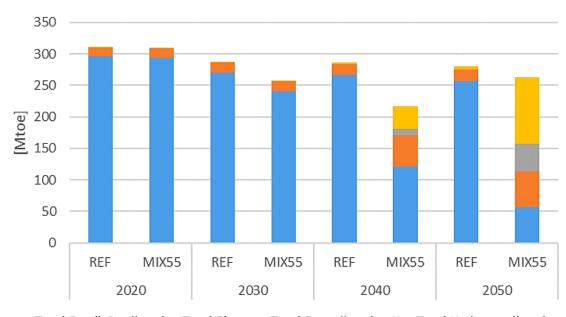
Changing course or changing pace?

REPowerEU and the gas package

James Watson, Eurogas



How the European Commission sees the evolution of the consumption of gases

Commission gas package scenario confirms the strong role of gas in the energy transition

- Biogas and biomethane, renewable and lowcarbon hydrogen and synthetic fuels will gradually replace fossil gases and represent very significant shares of the gaseous fuels in the energy mix towards 2050.
- Conversely, the share of natural gas is projected to be significantly reduced and coupled with carbon capture usage and storage ('CCUS') technologies.
- > The projections show that the energy carried by gaseous fuels would, after slightly decreasing between 2020 and 2030, stay in 2050 at about 85% of the current level.

Total consumption of gaseous fuels (Mtoe)

REPowerEU aims to accelerate the transition from natural gas to renewable gases

REPowerEU objective: Reduce the level of natural gas consumption to match Russian imports

- > Fit-for-55: -116 bcm, equivalent to -30% gas consumption in 2030
- > REPowerEU: -194 bcm
 - Diversification (-60 bcm)
 - REPowerEU measures (-94 bcm)
 - Reduction due to higher long term gas and oil prices (-40 bcm)
- Combined reduction in EU natural gas consumption: -250 bcm (i.e. not including diversification)

Gross inland consumption by fuel in 2019 and in 2030 in the Fit-for-55 and REPowerEU scenarios (Mtoe)

Overall cost implications of REPowerEU

- > Higher fuel costs and the additional efforts to reduce gas consumption increase the cost of the energy system by almost 10% to about €1'900 Bn per year
- > System costs increase from 11.3% of GDP to 13.4%
- > Reduce fossil fuels dependence from Russia to zero would require €300 Bn cumulative investment from now until 2030 beyond the FF55 proposals
- > Saving on import expenditures: FF55 and REPowerEU measures combined can save €80 Bn on annual natural gas, €12 Bn on oil and €1.7 Bn on coal import expenditures

Biomethane: infrastructure needs

- > 35 bcm of biomethane by 2030 requiring investments of 37 bn euro by 2030
- > Grid connection
 - ± 5'000 facilitates need to be connected by 2030 across Europe
 - Provide incentives for biogas upgrading into biomethane: Reduce the costs for economic operators, which currently prevent biogas upgrading into biomethane
- > Local grid reinforcement wherever it is needed (not limited to cross-border areas)
 - Carry out regional assessment of network development and matching it with the potential of sustainable biomethane production
 - Assess challenges, bottlenecks and other possible measures from the infrastructure perspective for cost-efficient deployment of biomethane, including connection and injection costs
 - Address gas quality standardisation issues
- Carbon capture utilisation and storage
 - Potentially large volume of CO2 available for storage and utilization contributing to carbon removals (net negative emissions) requires CO₂ infrastructure and planning

Renewable hydrogen: projected volumes and use

> 20 Mt of renewable hydrogen:

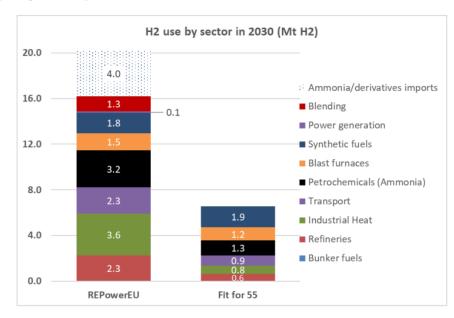

- Reduce the EU's dependence on natural gas (by ≈27 bcm), oil (by ≈ 3.9 Mtoe) and coking coal imports (≈ 156 Kt) from Russia, notably through use in transport and industry
- Disaggregation: 20 Mt = 10 Mt EU production, 6Mt import, 4Mt import as ammonia and potentially other carriers and alternatives

Table 8: Hydrogen use by sector in 2030 (kt hydrogen)

				Diff.
Sector	RePowerEU	Fit-for-55	Difference	due to high
				prices
Bunker fuels	0	0	0	0
Refineries	2273	613	1660	-32
Industrial Heat	3629	756	2873	146
Transport	2319	882	1437	90
Petrochemicals (Ammonia)	3232	1306	1925	-116
Blast furnaces	1520	1152	368	-92
Synthetic fuels	1788	1870	-82	-63
Power generation	105	0	105	0
Blending	1335	0	1335	0
Total	16200	6579	9621	-67

Note: conversion from ktoe to kt H2 uses a 2.87 factor.

Figure 4: Hydrogen use by sector in 2030

Source: Modelling using PRIMES.

Renewable hydrogen: supply requirements, infrastructure and costs

> Supply requirements in 2030:

- Requires around 500 TWh additional power generation
- EU hydrogen industry estimates a need of around 120 GW of electrolyser capacity in the EU by 2030, which would suffice to meet the objective of producing 10 mt of renewable hydrogen.

> Costs:

- Total costs related to power generation between 335-471 Bn, out of which 200-300 Bn for additional renewable electricity production itself.
- Upscaling the electrolysers manufacturing capacities requires 2 Bn
- Electrolysers 50-75 Bn
- EU internal pipelines 28-38 bn
- Storage 6-11 bn
- Cross border infrastructure 2 bn
- > **Repurposed infrastructure:** Upscaling of the hydrogen transport infrastructure will mainly rely on repurposed pipelines, complemented by newly built ones.

Gas(es) will continue to play a crucial role in the energy transition

01

Needed to balance variable renewable power generation

02

Needed for longterm seasonal storage 03

Needed for a costeffective energy transition

