

www.dbi-gruppe.de

9th HIPS-NET Workshop Underground Hydrogen Storage

Nazika Moeininia, Cindy Kleinickel, Hagen Bültemeier DBI Gas- und Umwelttechnik GmbH

9th HIPS-NET Workshop, Web Conference

1 Hydrogen – Energy Carrier of the Future

- 2 Hydrogen Underground Storage Status quo
- **3** Further Research Demand

Hydogen – Energy Carrier of the Future

Energie mit Zukunft. Umwelt und Verantwortung.

Underground Gas Storage Europe – Overview

→ TOTAL working gas volume of natural gas in EUROPE 1572 TWh

16th June 2022

Gas Storage Europe – Overview

Capacities by Type (Total Europe)

Type/Status	Operational				
	TWh	No.			
Aquifer	88,7	27			
Depleted field	761,7	87			
Rock Cavern	0,1	2			
Salt cavern	203,4	61			
VGS - multiple types	518,4				
Europe total	1572,2	177			

Data © GIE Storage Database 2021/07/14

Hydrogen Storage Potential (Theoretical)

- Factor 1.6 lower in terms of volume then natural gas
- Factor 3.5 lower in terms of energy then natural gas

DB

Gruppe

16th June 2022

Why (Underground-) Hydrogen Storage?

Speicherkapazität

Michael Sterner et al (2017): Energiespeicher, Springer Vieweg

Short-term storage

- Capacitors, coils (electric)
- Flywheel mass storage
- Batteries (electrochemical)
- Latent heat accumulators
- Compressed air storage
- Pumped storage plants (most of them)

Long-term storage

- Cavern storage
- Pore storage
- some thermal storages
- some pumped storage plants

→ Chemical energy storage systems are in the required order of magnitude with required ranges

16th June 2022

Hydrogen Underground Storage – Status quo

Energie mit Zukunft. Umwelt und Verantwortung.

Hydrogen underground storage - status quo

- Aspects affecting the underground storage of hydrogen (UGS)
 - Gas properties
 - » Hydrogen is smallest gas molecule
 - » Highly diffusible
 - Lower density, compressibility and energy content by volume compared to natural gas
 - Working gas volume (WGV) and stored energy
 - » Depending on gas density, compressibility and operating pressure range of UGS
 - Operation
 - » Pressures in the wellbore
 - » Flow velocities
 - Material and functionality of equipment
 - Quality demands: affected by
 - » hydrogen production process

16th June 2022

- » storage type (The storage of gases in geological formations leads to quality changes depending on the type of UGS and previous use)
- » as well as the transport of the hydrogen (pipeline)

© ESK GmbH, Z-Factor of Hydrogen (-blends)

© ESK GmbH, Maximum water content of Hydrogen (-blends)

Hydrogen underground storage – status quo WGV and stored energy, example numbers for Germany

Basis

$-p \cdot V = m \cdot R_i \cdot T \cdot Z(p,T)$

$$-V_N = V_{(p,T)} \cdot \frac{p_{res}}{p_N} \cdot \frac{T_N}{T_{res}} \cdot \frac{1}{Z(p,T)}$$

$$-WGV_{H_2} \cdot \frac{p_N}{p_{Res}} \cdot \frac{T_{Res}}{T_N} \cdot Z(p,T)_{H_2} = WGV_{NG} \cdot \frac{p_N}{p_{Res}} \cdot \frac{T_{Res}}{T_N} \cdot Z(p,T)_{NG}$$

Conversion

$$WGV_{H_2} = WGV_{Natural \ Gas} \cdot \frac{Z(p,T)_{Natural \ Gas}}{Z(p,T)_{H_2}}$$

	Cumulative storage capacity of existing UGS in Germany								
Types of UGS	Natural gas WGV	Natural gas WGV	H ₂ -WGV	H ₂ -WGV					
	Mio. m ³ i.N.	TWh	Mio. m ³ i.N.	TWh					
Pore UGS	8.615	92.671	5.952	18					
Cavern UGS	15.087	162.106	10.244	31					
Total	23.702	254.777	16.196	49					

p: pressure, **V**: Volume, **R**_i: special gas constant, **T**: Temperature, **Z**: Z – Factor, **WGV**: Working gas volume

→ The amount of energy stored depends on the calorific value (approx. 3.5 x lower than natural gas)

Operation: Pressure development in boreholes and impact on compressors

Static

 $- BHP = WHP \times e^{S}$

Example							
h	1200	m					
dv	0,069561077						
Temperature at WH	10	°C					
Temperature at BH	50	°C					
WHP	175	bar					
$Z_m = f(P_m, T_m)$	1,0716						
S	0,10185371						
BHP	193,76	bar					

BHP: Bottom Hole Pressure **WHP**: Well Head pressure **Hydrostatic Component**: $s = \frac{g \cdot h}{T_m \cdot R_i \cdot Z_m}$

Operation: Pressure development in boreholes and impact on compressors

 $BHP^2 = WHP^2 \times e^{2S} \pm \theta \dot{V}_n^2 \dot{V}_n$

Static component and dynamic friction losses: $\theta = 1.137 \cdot 10^4 \cdot \frac{\lambda \cdot T_m^2 \cdot Z_m^2 (e^{2s} - 1)}{d^5}$

© DBI, Pressure development (Generic example)

16th June 2022

•
$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\kappa-1}{\kappa}}$$

- $P = \dot{m} \cdot c_p \cdot (T_2 T_1)$
- $\dot{Q} = \dot{m} \cdot c_p \cdot (T_3 T_2)$
- T_1 und P_1 : Compressor inlet temperature & Pressure
- T_2 und P_2 : Compressor outlet temperature & Pressure
- T_3 : Outlet temperature of cooler
- *Q*: Cooling Power, *m*: Mass flow rate & P: Power

[©] DBI, Compressor performance (Generic example)

- → Up to approx. 5 % by volume H₂: isentropic exponent changes only insignificantly ($\dot{m}\downarrow$)
- → Up to approx. 20 vol.% H₂: \dot{m} decreases and isentropic exponent changes significantly
- → Up to 100 % H₂: Power decreases due to strongly decreased \dot{m}

Operation: cycles and convergence (cavern-UGS)

Operation Cycles

- Multi-cyclic possible in H₂-operation
 - » Changed average cavern pressure
- Surface subsidence
 - » Change of P_{max}, P_{min}, P_{avg}, Temperature, cycles during withdrawal process
 - » Change of mechanical properties of salt convergence
 - » WGV-Development

Scheme Subsidence as result of cavern convergence \circledcirc Sroka et. al, Freiberg, 2017

Average:
$$P_{Avg} = \sum P_i t_i \text{ and } t_i = \frac{t}{365}$$

© DBI, Generic example

16th June 2022

Material and functionality of equipment Main components of a UGS

Hydrogen has special thermodynamic, fluid dynamic, energetic, and corrosive properties that affect storage, operation, and equipment

- Surface facility
 - » Compressor
 - » Gas treatment

- Well equipment

- » Tubing
- » Packer
- » SSV

- Storage formation

 Microbial and geochemical processes, relevant for pore storage

Stylized P&ID surface facility © DBI-Gruppe

Material and Functionality of Equipment

- → Cavern Storage: Evaluate material and function
- \rightarrow Pore Storage: additional evaluation processes in the geological porous formation

16th June 2022

9th HIPS-NET Workshop

Gruppe

Further Research demand

Energie mit Zukunft. Umwelt und Verantwortung.

Material assessment according to EIGA-guideline, no specific knowledge for APIsteels. Some practical short – mid-term experience was gathered in projects.

- » Austenitic metal grids
- » Carbon equivalent less than 0.35 %
- » Yield strength below 830 MPa
- » Phosphorus content \leq 0.015 % and sulfur content \leq 0.025%, etc.

We	ll completion	Material	C- content [%]	Mn- content [%]	Mo- content [%]	Cr- content [%]	V- content [%]	Ni- content [%]	Cu- content [%]	C.E [%]	Max. Sulfur content [%]	Max. Phosphorus content [%]	Yield strength [Mpa]	HRC [-]	нв [-]	Suitability
	Section 1, 32"									0						
	Section 2, 18 5/8"	N80								0	0,03	0,03	758			Does not come
	Section 3, 18 5/8"	K55								0	0,03	0,03	552			into contact with
Casing	Section, 13 3/8"	N80								0	0,03	0,03	758			the storage
	Section 5, 13 3/8"	N80								0	0,03	0,03	758			medium
	Section 6, 13 3/8"	N80									0,03	0,03	758			
	Section 7, 13 3/8"	N80								0	0,03	0,03	758			
Tubing	Steel pipe	C75	0,75	0,7	0,01	0,4	0	0,4	0	0,96166667	0,025	0,025	880		241	Not suitable
	Thread	C75	0,75	0,7	0,01	0,4	0	0,4	0	0,96166667	0,025	0,025	880		241	Not suitable
	Tubing Hanger	F6NM	0,05	1,5	0,5	13	0	4	0	2,81666667	0,015	0,04	520		245 - 309	suitable
	transition	AISI 4140	0,405	0,875	0,2	0,95	0	0	0	0,7425	0,04	0,04	655	22		Not suitable
Flow coupling	9 5/8"	AISI 4130	0,305	0,5	0,2	0,95	0	0	0	0,58	0,04	0,04	655	23		Not suitable
	7"	AISI 4140	0,405	0,875	0,2	0,95	0	0	0	0,7425	0,04	0,04	655	22		suitable

For subsurface well completion materials, suitability of many components unclear yet. Some practical experiences exist.

→ DVGW-UGS-Kompendium (G 202143): 1st May 2022 – 31st August 2023
→ Casing below Packer – Current discussion

9th HIPS-NET Workshop

NRI

Gruppe

Further Research demand: suitability of porous UGS, processes in the reservoir

Heterogenity of the reservoirs

- Hysteresis
- Gas mixing processes WGV CGV
- Dispersion
- Microorganisms
 - Present based on reservoir condition
- Salinity
 - Salinity $\uparrow \rightarrow H_2$ solubility \downarrow

16th June 2022

- Hydrogen solubility in water
- Gas loss
 - » Biomethanation possible, if CO_2 source present

© S. Bauer, "Underground Sun.Storage - Publizierbarer Endbericht - 3.1," RAG, Wien, 2017

→ Pore UGS are also important to achieve climate protection goals and to provide the required H2-storage capacities (until 2045)

Further Research demand: suitability of porous UGS, processes in the reservoir

- Investigation of effects of gas properties (H₂ und H₂-NG-blends)
 - Large difference in density
 - Large difference in viscosity
 - Large difference in compressibility
 - (competitive) gas solubility in (saline) water
- Main questions
 - Gas mixing behaviour, WGV (H₂) CGV (Natural Gas)
 - » Structure of UGS, tilting angles, thickness, Aquifers,...
 - » Pore structure
 - » Well Locations and storage operation regime
 - Transmissivity
 - Diffusion, Dispersion
- \rightarrow Clarification of Gas composition after withdrawal
- \rightarrow required effort for treatment and purification

Gruppe

Further Research demand: suitability of porous UGS, processes in the reservoir

Special topics

- Microbial gas conversion processes
- Microbial growth, Pore-Plugging (bio-film generation)
- Geo-chemical rock alteration

 $CO_{2} + 4H_{2} \rightarrow CH_{4} + 2H_{2}O$ $2CO_{2} + 4H_{2} \rightarrow CH_{3}COOH + 2H_{2}O$ $SO_{4}^{2-} + 5H_{2} \rightarrow H_{2}S + 4H_{2}O$ $3Fe_{2}^{III}O_{3} + H_{2} \rightarrow 2Fe_{3}^{II}O_{4} + H_{2}O$

Time

Overview microbial processes in reservoirs © Parker et. al, 2018

Thank you very much for your attention!

Your contact

Nazika Moeininia

Project Manager/Reservoir Engineer

Tel.: +49 (0) 3731 4195 362 E-Mail: nazika.moeininia@dbi-gruppe.de

DBI Gas- und Umwelttechnik GmbH Karl-Heine-Straße 109/111 · D-04229 Leipzig

• www.dbi-gruppe.de

Energie mit Zukunft. Umwelt und Verantwortung.

→ DBI eigenes Berechnungstool zur Spannungs- und Stabilitätsberechnung

16th June 2022

Well load - Tubing subsystem vs. Casing subsystem - Cement - Formation

\rightarrow Isotropic load in the tubing subsystem

16th June 2022

Well Integrity

Stress calculation in borehole completions Casing - cement - formation subsystem

© DBI, Well load in subsystem Casing-cement-formation - Anisotropic

→ Contact pressure is difficult to calculate mathematically → numerical simulation is necessary

16th June 2022

Bohrungsintegrität (Beispiel)

Teufe [m]	Anfahren <i>S_t</i> [-]	Einspeichern <i>S_t</i> [-]	Ausspeichern <i>S_t</i> [-]
0	1,92	1,92	2,56
1230	2,95	2,72	4,07

Beispiel: Ergebnisse Integritätsberechnung Tubing

$$S = \frac{\sigma_R}{\sigma_{V,Mi}} \le 1,25$$

© DBI, Radialspannungsverlauf des Systems Tubing-Casing-Zement-Gebirge (Beispiel)

\rightarrow Prüfung bestehender Casing-Komplettierung auf Standsicherheit für H₂-Betrieb

16th June 2022