

THyGA Test results

Presentation for HIPSNET

Jean Schweitzer DGC - EVIDA

June 2023

Testing Hydrogen admixture for Gas Applications

1- Introduction

2- Experimental tests: what we have done

3- Selection of test results

4- Conclusions

Testing Hydrogen admixture for Gas Applications

Scope

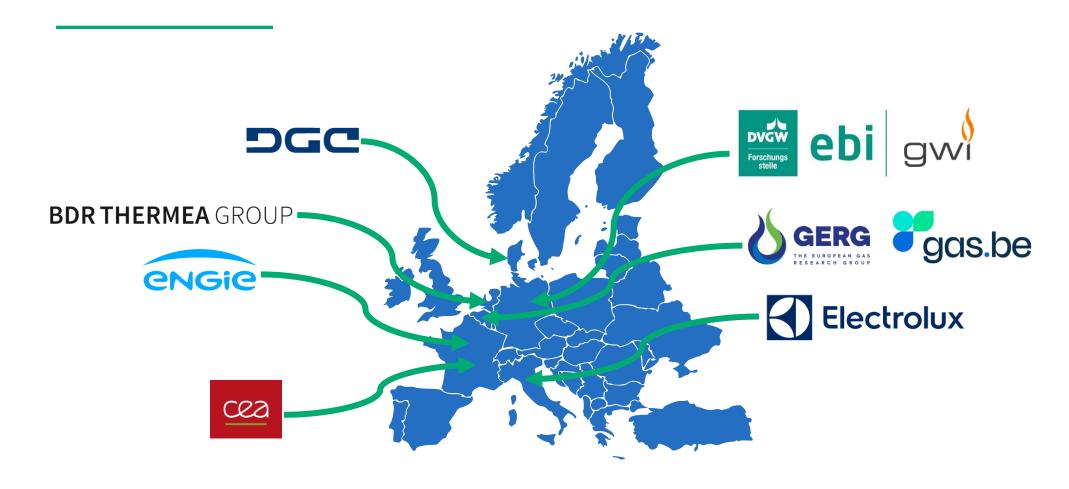
Household >200 million residential and commercial gas appliances

- Space heating and hot water
- Cooking
- Combined heat and Power production (CHP)
- Etc.

Not in the scope: Power Industry Mobility production

Q: How will the installed European stock of appliances be impacted by an increasing % of H2 injected? TESTING

- Safety
- Efficiency
- Emissions
- Operation


Other tasks:

- Mitigation solutions?
- Standardisation

Organization of the THyGA project

Project consortium: 9 partners in response to the Horizon 2020 call FCH-04-3-2019

1- Introduction

2- Experimental tests: what we have done

3- Selection of test results

4- Conclusions

Testing Hydrogen admixture for Gas Applications

Starting point: the segmentation

 We defined ~60 appliances type/technologies segments (Boilers, water heaters, cookers, catering, space heaters, CHP, GHP, others)

TULCA	т	Г		1	Tatal Assellan
THyGA Segment	Type of appliance	Category	Burner type	Standard	Total Appliance Population
101	аррнансе		Partial premix/conv (atmos. & fanned)		13 588
102	-	Open flued (former EN 297)	Low NOx technology burners	-	2 012
102	-		Full premix	EN 15502	152
103	-	Room-sealed (former EN 483)	Partial premix/conv (atmos. & fanned)		25 333
105	-		Low NOx technology burners		1 972
105	BOILERS		Full premix		1 781
107	-		Partial premix fanned		2 920
107	-	Condensing boiler (former EN 677)	Full premix (including CCB)		2 920 56 492
108	-	Forced-draught / Jet burner boiler	Full premix (including CCB)	-	56 492
109		(former EN 303-3)	Jet burner		1 129
201		Instantaneous open flued	Partial premix/atmos	EN 26	14 945
202	WATER	Instantaneous room-sealed	Partial premix/fanned	EN 20	14 543
203	HEATERS	Storage open flued	Partial premix/atmos	EN 89	2 121
204		Storage room-sealed	Partial premix/fanned	EN 89	3 121
501		Independent gas-fired convection heaters type B	heating & decoration	EN 613	4 678
502	Space	Independent gas-fired convection heaters type C	heating & decoration, balanced	EN 613	1 839
503	Heaters	Decorative fuel-effect gas appliance/burner	heating & decoration	EN 13278 + EN 509	2 529
504		Independent gas-fired flueless space heaters	heating & decoration	EN 14829	98
601		Stirling Engines		EN 50465	15
602		Internal Combustion Engine			41
603	СНР	Micro Gas Turbine	heating & electricity production		1
604		PEM FC			5
605		SO FC			3
701		Engine HP		EN 16905	
702	НР	Adsorption	Heating	EN 42200	60
703		Absorption		EN 12309	

Budget fo	or the te	est of	100	applianc	es:	we	had	to	defi	ne
priorities	based of	on:								

The population of the segments - 2 Their sensitivity to H2

	THyGA Segment	Type of appliance	Category	Burner type	Standard	Total Appliance Population
]	801		Commercial Dryers		EN 12752-1 and -2	unknown
7	802		Infrared Radiant Heaters (former EN 416-1)	non-domestic, tube radiant heaters	EN 416	
1	803		Infrared Radiant Heaters (former EN 419-1)	non-domestic, luminous radiant heaters	EN 419	1 000
+	804	OTHER	Infrared Radiant Heaters (former EN 777-1)	non-domestic, tube radiant heaters	EN 416	
1	804bis	OTHER	Radiant strip	with fan driven burners and recirculation fans	EN 17175	
1	805		Air heaters (former EN 1020)	non-domestic, forced convection, fan, <300kW	EN 17082	
1	806		Air heaters (former EN 525)	non-domestic, forced convection, <300kW	EN 17082 EN 17082	1 000
4	807		Air Heaters <70kW (former EN778)	Ducted warm air; forced convection air heaters		
ı	808		domestic washing machines		EN 1518	2
╛	809		domestic dryers		EN 1518	2
1	301		Surface burner (cooktops) with	Single ring	EN 30-x	32 574
╛	302		atmospheric burner or "Venturi" burner (vertical venturi burner)	Single crown		
ı	303			Multi ring (mainly double or triple ring)		
┨	304		Surface burner (cooktops) with partially premix burner (long horizontal venturi)	Single ring		
ı	305			Single crown		1 352
1	306	COOKERS		Multi ring (mainly double or triple ring)		
4	307	COOKERS	Cavity burner "tubular" (ovens, freestanding ranges)	Atmospheric burner		3 853
ı	308			"Venturi" burner		3 833
┨	309			Partially premixed		27 712
┨	310		Cavity burner "metal sheet" (ovens, freestanding ranges)	Atmospheric burner		13 056
┨	311			"Venturi" burner		
┨	312			Partially premixed		14 658
┨	401		Open burners and wek burners	Circular burner with vertical slots	- EN 203-2-1	
┨	402		Open burners and wok burners	Circular burner with holes		
1	403		Mixed ovens	Draught burners	EN 203-2-2	
1	404		Ovens	Tubular or circular burners	EN 203-2-2	
_	405		Boiling pans / pasta cookers	Microperforated burner	EN 203-2-3 EN 203-2-11	
	406	CATERING	Fryers	Premix burner	EN 203-2-4	unknown
	407		Salamanders / Rotisseries	Ceramic or blue flame burners	EN 203-2-7	
	408		Brat pans	multi-ramp tubular slot burners	EN 203-2-8	
	409		Covered burners (griddles, solid tops, pancake cookers)	Tubular burner or multi-ramp tubular burner	EN 203-2-9	
	410		Barbecues	Chargrill with burner tubes w/ holes on top	EN 203-2-10	

WP3 - Testing protocol and parameters studied

Objective: to understand how appliances react in the short term (few minutes to few hours) with different H2NG blends.

The philosophy of the test in lab is to simulate a situation that is found on the field: **Gas quality variation with H2 on appliances** that are not modified.

Parameters to vary = Operational conditions as in reality:

- % H2 & H2 Rate of change (ROC)
- Natural gas composition
- Pressure
- Adjustment or not. Etc.

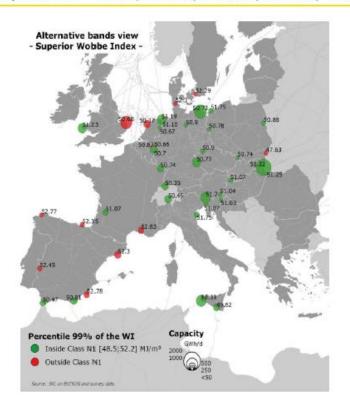
Parameters to measure

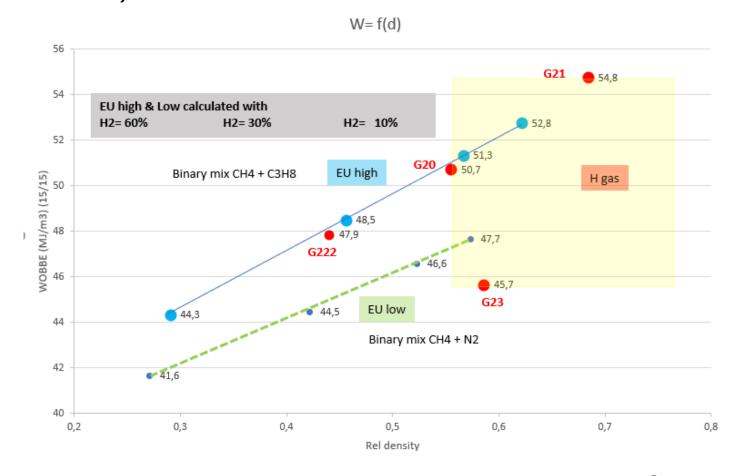
- Combustion/emissions
- Efficiency
- Safety
- Operational aspects (Normal operation of the appliances or not)

Testing on 100 appliances under different operation conditions

- Long- term testing on 7 appliances
- Tightness check of present indoor installation

21-06-2023


WP3 - Testing protocol and parameters studied



Specification of the gases used for the testing

Based on real distributed gases (EU High and EU Low)

100% percentile = 47,63 (EU LOW) à 52,78 (EU HIGH) MJ/m3

Few definitions

Flashback

Flame with Flash back (picture THyGA application)

t = 15 s

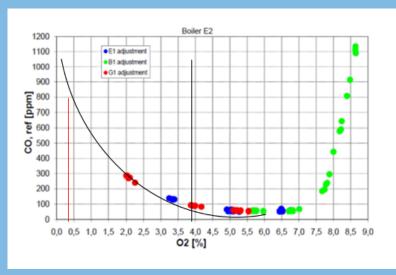
t = 5 min

t = 8 min

Test showing FB under following test conditions, Qmax, Pnom, CH4 = 40% H2 = 60%

Flame with partial flash back on a cooker hob (picture THyGA test DGC)

Adjustment


Adjustment = the operation of adjustment to reach a certain **air** excess according the **O2 or CO2 value** that is given by the boiler manufacturer.

Usually, appliances are adjusted to an air excess that is a **compromise** to achieve the best possible efficiency with the lowest

possible emissions.

Most of appliances in the category H (High calorific gas — widely distributed in the EU) are adjusted by the manufacturers with CH4 before being sold on the market.

Some appliances are also re-adjusted **on the field** (commissioning or after a service or a reparation). **This is generally done with the gas distributed locally and not CH4**.

1- Introduction

2- Experimental tests: what we have done

3- Selection of test results

4- Conclusions

Testing Hydrogen admixture for Gas Applications

Segment 100a Boilers fully premix: Adjustment issue

Exemple 1 Boilers

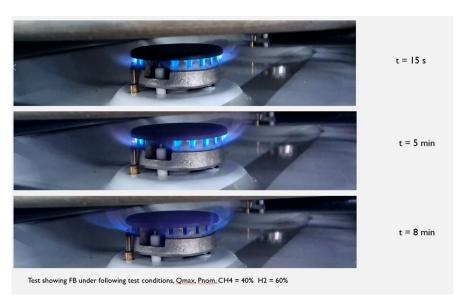
Main issue = adjustment with a low Wobbe gas containing H2

Example of a real situation:

<i>Day1</i> Biometane	<i>Day2</i> Injection of H2	<i>Day3</i> LNG
EU low	EU Low + 20% H2	EU High
	Field Adjustment	CO issues

11

- 1. Possible issue already at 20% H2 if adjustment is still allowed when H2 in the grid and present procedure is not changed (= same CO2% or O2% as for NG).
- 2. Adjusting with O2 instead of CO2 may solve a great part of the issue


WP3 – Results for the short-term tests

Segment 300a cookers domestic.

Flashback:

• Flashback was observed on many cookers hobs for in general H2 >= 30% and especially during long running time of the cookers.

21-06-2023

WP3 – Results for the short-term tests

Segment 300a cookers domestic: flame aspects and other observations

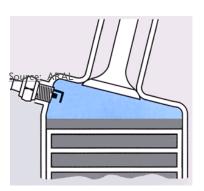
Exemple3 Cookers

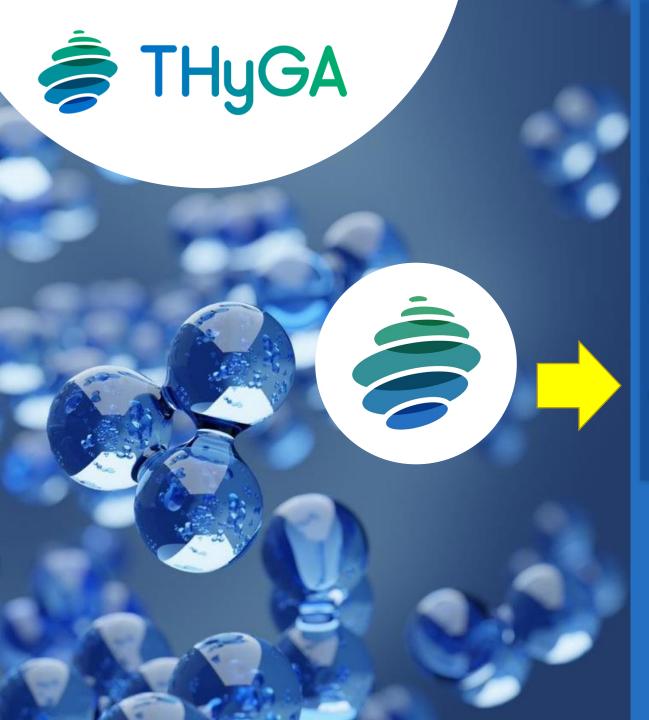
Water condensates that create partial extinction

- With hydrogen and cold water in the pan, condensation appears on the bottom of the pan.
- When the droplets hits the burner, it causes a partial extinction of the flame. The flame turns orange for a few seconds and becomes blue again when water has fully evaporated.

EN12 burner under normal operation and with water falling into the flame

21-06-2023


DELAYED IGNITION WP3 – Results for the short-term tests


Decorative Space heaters: delayed ignition

Exemple4 Space heaters

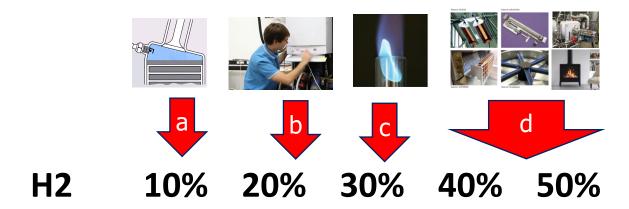
Delayed ignition test on decorative space heater

1- Introduction

2- Experimental tests: what we have done

3- Selection of test results

4- Conclusions


Testing Hydrogen admixture for Gas Applications

Overall impact when increasing H2 %

- a) The first issue observed is a limited number of appliances whose design makes them sensitive to **delayed ignition.**
- b) The second issue that may happen starting from 20% or maybe below, is high CO emissions with premix appliances that can be **adjusted on-site**.
- c) The third issue is **Flashback**. It generally occurs for 30% H2 or more, appearing first on partially premix appliances when increasing the H2 %.
- d) Most of other appliances will be subject to issues from 40% H2.

WP3 – Results for the short-term tests PERFORMANCES

In general, under the conditions of the THyGA testing (= copy the reality of the field):

- H2 has no or only small impact on efficiency but for boilers where we see a slight increase of efficiency on Hi due to higher heat recuperation on condensation with the testing conditions used.
- Heat output decreases with H2 injection which could prove to bring comfort issue for domestic hot water or cooking appliances
- NOx is decreasing with H2 (*)
- **CO** is decreasing with H2 (*)

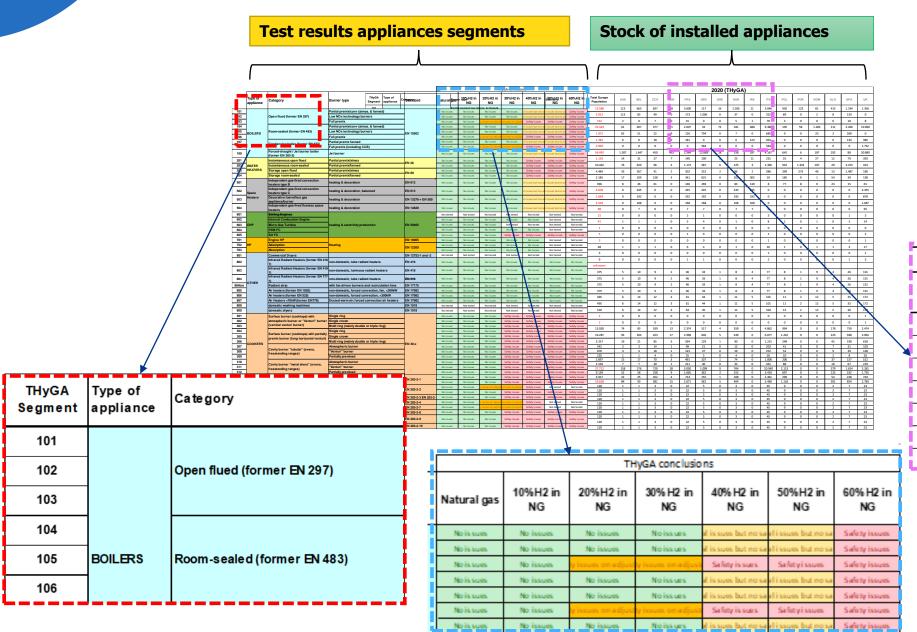
(*) only when considering the value in ppm calculated with no air excess. Results in mg/kWH may be different.

	Overall Impact	of H2 on			
	SEGMENT	Efficiency	NOX	СО	CH4
100a	Boiler premix	+	-	-	
100b	Boiler NOT premix	0	-	-	
200	Water heater	0	-	-	
300	Cooker dom	0	- (*)	-	
400a	Catering premix	NM	-	-	
400b	Catering NOT premix	unclear	-	-	
500	Space heaters	0	-	unclear	
600	CHP	0	unclear	unclear	
700	GHP	0	-	-	
800	Radiant heater & commercial air heaters	-	unclear	-	

(*) can suddenly increase for H2 >40%

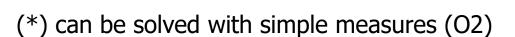
Other (positive) results

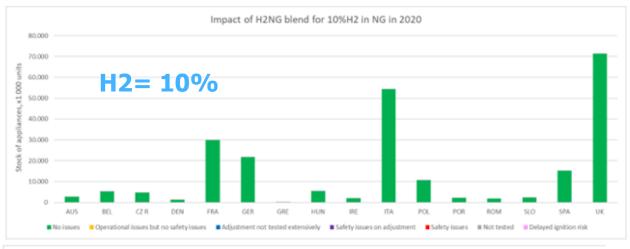
- Most of the appliances tested have flame supervision systems based on flame ionisation currents. For most of them, the ionisation signal remains quite high and above the threshold.
- Both impacts of "low air temperature (- 10 °C)" and "Flue gas pipe length" have been tested on few appliances (boilers) and the results from the test done show no impact of hydrogen.
- **ROC (PLUG FLOW)** is generally not showing issue (generally variation from 0 to 40% H2 and the other way round).
- Long term test on 7 appliances with 30% H2 have not shown issues.
- Leaks from existing used indoor components tested are within the regulations limits

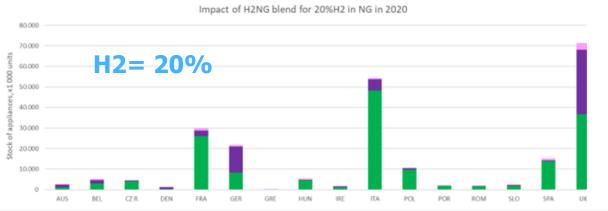


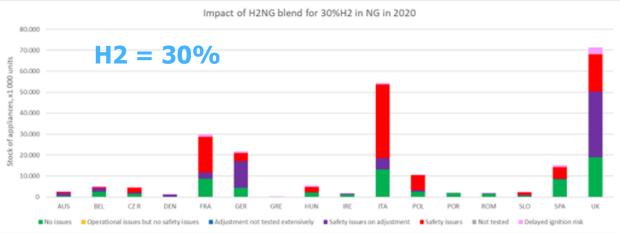
DGC's long term test rig is especially designed to monitor gas appliances performances over testing periods of several weeks or months.

Quantification of the issues at country level




			2020 (1	ГНуGА)
DEN	FRA	GER	GRE	HUN	IRE
28	3.600	117	16	1.026	21
0	173	1.006	0	37	0
0	41	0	0	5	1
71	2.607	33	73	181	488
9	126	704	0	7	0
0	181	0	0	6	123
0	0	584	0	0	0


Scenarios of H2 blend in NG


H2 = 20%
Delayed ignition (4%)
Adjustment (25%) (*)

H2 Blends: the 3 main challenges and solutions

1- Adjustment of fully premix appliances (As condensing boilers)

2- Delayed ignition

3- Liability.

Appliances presently on the market are NOT certified for the use of H2 blends. Who is responsible liable if issues?

Ban CO2 Adjustment and use O2 instead

Ban Adjustment totally

Adjust with the knowledge of H2 and / or Wobbe. Need for portable "cheap" instruments.

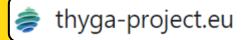
More test are needed. especially appliances without ventilators shall be examined more extensively.

Appliances to be removed from the areas where H2 is injected in the grid

To be discussed with national safety authorities, manufacturers, DSOs etc.

Part of the solution could be to update the definition of "natural gas" (but this would probably not be for more than few %)

Find Us Online



VISIT THE THYGA WEBSITE

All public presentations and deliverables of the project will be available on the project website

GERG LINKEDIN & WEBSITE

For regular updates, you can also follow the GERG <u>LinkedIn</u> page and <u>website</u>

CONTACT EMAIL

Do not hesitate to contact us by email at contact thyga@engie.com